Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
NMR Biomed ; : e5152, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565525

RESUMO

Relaxation correction is an integral step in quantifying brain metabolite concentrations measured by in vivo magnetic resonance spectroscopy (MRS). While most quantification routines assume constant T1 relaxation across age, it is possible that aging alters T1 relaxation rates, as is seen for T2 relaxation. Here, we investigate the age dependence of metabolite T1 relaxation times at 3 T in both gray- and white-matter-rich voxels using publicly available metabolite and metabolite-nulled (single inversion recovery TI = 600 ms) spectra acquired at 3 T using Point RESolved Spectroscopy (PRESS) localization. Data were acquired from voxels in the posterior cingulate cortex (PCC) and centrum semiovale (CSO) in 102 healthy volunteers across 5 decades of life (aged 20-69 years). All spectra were analyzed in Osprey v.2.4.0. To estimate T1 relaxation times for total N-acetyl aspartate at 2.0 ppm (tNAA2.0) and total creatine at 3.0 ppm (tCr3.0), the ratio of modeled metabolite residual amplitudes in the metabolite-nulled spectrum to the full metabolite signal was calculated using the single-inversion-recovery signal equation. Correlations between T1 and subject age were evaluated. Spearman correlations revealed that estimated T1 relaxation times of tNAA2.0 (rs = -0.27; p < 0.006) and tCr3.0 (rs = -0.40; p < 0.001) decreased significantly with age in white-matter-rich CSO, and less steeply for tNAA2.0 (rs = -0.228; p = 0.005) and (not significantly for) tCr3.0 (rs = -0.13; p = 0.196) in graymatter-rich PCC. The analysis harnessed a large publicly available cross-sectional dataset to test an important hypothesis, that metabolite T1 relaxation times change with age. This preliminary study stresses the importance of further work to measure age-normed metabolite T1 relaxation times for accurate quantification of metabolite levels in studies of aging.

2.
bioRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38659947

RESUMO

Background: To examine data quality and reproducibility using ISTHMUS, which has been implemented as the standardized MR spectroscopy sequence for the multi-site Healthy Brain and Child Development (HBCD) study. Methods: ISTHMUS is the consecutive acquisition of short-TE PRESS (32 transients) and long-TE HERCULES (224 transients) data with dual-TE water reference scans. Voxels were positioned in the centrum semiovale, dorsal anterior cingulate cortex, posterior cingulate cortex and bilateral thalamus regions. After acquisition, ISTHMUS data were separated into the PRESS and HERCULES portions for analysis and modeled separately using Osprey. In vivo experiments were performed in 10 healthy volunteers (6 female; 29.5±6.6 years). Each volunteer underwent two scans on the same day. Differences in metabolite measurements were examined. T 2 correction based on the dual-TE water integrals were compared with: 1) T 2 correction based the default white matter and gray matter T 2 reference values in Osprey; 2) shorter WM and GM T 2 values from recent literature; and 3) reduced CSF fractions. Results: No significant difference in linewidth was observed between PRESS and HERCULES. Bilateral thalamus spectra had produced significantly higher (p<0.001) linewidth compared to the other three regions. Linewidth measurements were similar between scans, with scan-to-scan differences under 1 Hz for most subjects. Paired t-tests indicated a significant difference only in PRESS NAAG between the two thalamus scans (p=0.002). T 2 correction based on shorter T 2 values showed better agreement to the dual-TE water integral ratio. Conclusions: ISTHMUS facilitated and standardized acquisition and post-processing and reduced operator workload to eliminate potential human error. Highlights: ISTHMUS has been implemented into the HBCD study protocol.It acquires both short-TE and Hadamard-edited transients.ISTHMUS reduces operator workload.ISTHMUS potentially allows improved T2 relaxation correction.

3.
Magn Reson Med ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649977

RESUMO

PURPOSE: The interest in applying and modeling dynamic MRS has recently grown. Two-dimensional modeling yields advantages for the precision of metabolite estimation in interrelated MRS data. However, it is unknown whether including all transients simultaneously in a 2D model without averaging (presuming a stable signal) performs similarly to one-dimensional (1D) modeling of the averaged spectrum. Therefore, we systematically investigated the accuracy, precision, and uncertainty estimation of both described model approaches. METHODS: Monte Carlo simulations of synthetic MRS data were used to compare the accuracy and uncertainty estimation of simultaneous 2D multitransient linear-combination modeling (LCM) with 1D-LCM of the average. A total of 2,500 data sets per condition with different noise representations of a 64-transient MRS experiment at six signal-to-noise levels for two separate spin systems (scyllo-inositol and gamma-aminobutyric acid) were analyzed. Additional data sets with different levels of noise correlation were also analyzed. Modeling accuracy was assessed by determining the relative bias of the estimated amplitudes against the ground truth, and modeling precision was determined by SDs and Cramér-Rao lower bounds (CRLBs). RESULTS: Amplitude estimates for 1D- and 2D-LCM agreed well and showed a similar level of bias compared with the ground truth. Estimated CRLBs agreed well between both models and with ground-truth CRLBs. For correlated noise, the estimated CRLBs increased with the correlation strength for the 1D-LCM but remained stable for the 2D-LCM. CONCLUSION: Our results indicate that the model performance of 2D multitransient LCM is similar to averaged 1D-LCM. This validation on a simplified scenario serves as a necessary basis for further applications of 2D modeling.

4.
ArXiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38584615

RESUMO

Purpose: Recent expert consensus publications have highlighted the issue of poor reproducibility in magnetic resonance spectroscopy (MRS) studies, mainly due to the lack of standardized reporting criteria, which affects their clinical applicability. To combat this, guidelines for minimum reporting standards (MRSinMRS) were introduced to aid journal editors and reviewers in ensuring the comprehensive documentation of essential MRS study parameters. Despite these efforts, the implementation of MRSinMRS standards has been slow, attributed to the diverse nomenclature used by different vendors, the variety of raw MRS data formats, and the absence of appropriate software tools for identifying and reporting necessary parameters. To overcome this obstacle, we have developed the REproducibility Made Easy (REMY) standalone toolbox. Methods: REMY software supports a range of MRS data formats from major vendors like GE (p. file), Siemens (.twix, .rda, .dcm), Philips (.spar/.sdat), and Bruker (.method), facilitating easy data import and export through a user-friendly interface. REMY employs external libraries such as spec2nii and pymapVBVD to accurately read and process these diverse data formats, ensuring compatibility and ease of use for researchers in generating reproducible MRS research outputs. Users can select and import datasets, choose the appropriate vendor and data format, and then generate an MRSinMRS table, log file, and methodological documents in both Latex and PDF formats. Results: REMY effectively populated key sections of the MRSinMRS table with data from all supported file types. In the hardware section, it successfully read and filled in fields for Field Strength [T], Manufacturer Name, and Software Version, covering three of the five required hardware fields. However, it could not input data for RF coil and additional hardware information due to their absence in the files. For the acquisition section, REMY accurately read and populated fields for the pulse sequence name, nominal voxel size, repetition time, echo time, number of acquisitions/excitations/shots, spectral width [Hz], and number of spectral points, significantly contributing to the completion of the Acquisition fields of the table. Furthermore, REMY generates a boilerplate methods text section for manuscripts. Conclusion: This approach reduces effort and obstacles associated with writing and reporting acquisition parameters and should lead to the widespread adoption of MRSinMRS within the MRS community.

5.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585798

RESUMO

Purpose: Retrospective frequency-and-phase correction (FPC) methods attempt to remove frequency-and-phase variations between transients to improve the quality of the averaged MR spectrum. However, traditional FPC methods like spectral registration struggle at low SNR. Here, we propose a method that directly integrates FPC into a two-dimensional linear-combination model (2D-LCM) of individual transients ('model-based FPC'). We investigated how model-based FPC performs compared to the traditional approach, i.e., spectral registration followed by 1D-LCM in estimating frequency-and-phase drifts and, consequentially, metabolite level estimates. Methods: We created synthetic in-vivo-like 64-transient short-TE sLASER datasets with 100 noise realizations at 5 SNR levels and added randomly sampled frequency and phase variations. We then used this synthetic dataset to compare the performance of 2D-LCM with the traditional approach (spectral registration, averaging, then 1D-LCM). Outcome measures were the frequency/phase/amplitude errors, the standard deviation of those ground-truth errors, and amplitude Cramér Rao Lower Bounds (CRLBs). We further tested the proposed method on publicly available in-vivo short-TE PRESS data. Results: 2D-LCM estimates (and accounts for) frequency-and-phase variations directly from uncorrected data with equivalent or better fidelity than the conventional approach. Furthermore, 2D-LCM metabolite amplitude estimates were at least as accurate, precise, and certain as the conventionally derived estimates. 2D-LCM estimation of frequency and phase correction and amplitudes performed substantially better at low-to-very-low SNR. Conclusion: Model-based FPC with 2D linear-combination modeling is feasible and has great potential to improve metabolite level estimation for conventional and dynamic MRS data, especially for low-SNR conditions, e.g., long TEs or strong diffusion weighting.

6.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464094

RESUMO

J-difference-edited MRS is widely used to study GABA in the human brain. Editing for low-concentration target molecules (such as GABA) typically exhibits lower signal-to-noise ratio (SNR) than conventional non-edited MRS, varying with acquisition region, volume and duration. Moreover, spectral lineshape may be influenced by age-, pathology-, or brain-region-specific effects of metabolite T2, or by task-related blood-oxygen level dependent (BOLD) changes in functional MRS contexts. Differences in both SNR and lineshape may have systematic effects on concentration estimates derived from spectral modelling. The present study characterises the impact of lineshape and SNR on GABA+ estimates from different modelling algorithms: FSL-MRS, Gannet, LCModel, Osprey, spant and Tarquin. Publicly available multi-site GABA-edited data (222 healthy subjects from 20 sites; conventional MEGA-PRESS editing; TE = 68 ms) were pre-processed with a standardised pipeline, then filtered to apply controlled levels of Lorentzian and Gaussian linebroadening and SNR reduction. Increased Lorentzian linewidth was associated with a 2-5% decrease in GABA+ estimates per Hz, observed consistently (albeit to varying degrees) across datasets and most algorithms. Weaker, often opposing effects were observed for Gaussian linebroadening. Variations are likely caused by differing baseline parametrization and lineshape constraints between models. Effects of linewidth on other metabolites (e.g., Glx and tCr) varied, suggesting that a linewidth confound may persist after scaling to an internal reference. These findings indicate a potentially significant confound for studies where linewidth may differ systematically between groups or experimental conditions, e.g. due to T2 differences between brain regions, age, or pathology, or varying T2* due to BOLD-related changes. We conclude that linewidth effects need to be rigorously considered during experimental design and data processing, for example by incorporating linewidth into statistical analysis of modelling outcomes or development of appropriate lineshape matching algorithms.

7.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260650

RESUMO

Purpose: The interest in applying and modeling dynamic MRS has recently grown. 2D modeling yields advantages for the precision of metabolite estimation in interrelated MRS data. However, it is unknown whether including all transients simultaneously in a 2D model without averaging (presuming a stable signal) performs similarly to 1D modeling of the averaged spectrum. Therefore, we systematically investigated the accuracy, precision, and uncertainty estimation of both described model approaches. Methods: Monte Carlo simulations of synthetic MRS data were used to compare the accuracy and uncertainty estimation of simultaneous 2D multi-transient LCM with 1D-LCM of the average. 2,500 datasets per condition with different noise representations of a 64-transient MRS experiment at 6 signal-to-noise levels for two separate spin systems (scyllo-inositol and GABA) were analyzed. Additional datasets with different levels of noise correlation were also analyzed. Modeling accuracy was assessed by determining the relative bias of the estimated amplitudes against the ground truth, and modeling precision was determined by standard deviations and Cramér-Rao Lower Bounds (CRLB). Results: Amplitude estimates for 1D- and 2D-LCM agreed well and showed similar level of bias compared to the ground truth. Estimated CRLBs agreed well between both models and with ground truth CRLBs. For correlated noise the estimated CRLBs increased with the correlation strength for the 1D-LCM but remained stable for the 2D-LCM. Conclusion: Our results indicate that the model performance of 2D multi-transient LCM is similar to averaged 1D-LCM. This validation on a simplified scenario serves as necessary basis for further applications of 2D modeling.

8.
Autism Res ; 17(3): 512-528, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279628

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Altered neurometabolite levels, including glutathione (GSH) and gamma-aminobutyric acid (GABA), have been proposed as potential contributors to the biology underlying ASD. This study investigated whether cerebral GSH or GABA levels differ between a cohort of children aged 8-12 years with ASD (n = 52) and typically developing children (TDC, n = 49). A comprehensive analysis of GSH and GABA levels in multiple brain regions, including the primary motor cortex (SM1), thalamus (Thal), medial prefrontal cortex (mPFC), and supplementary motor area (SMA), was conducted using single-voxel HERMES MR spectroscopy at 3T. The results revealed no significant differences in cerebral GSH or GABA levels between the ASD and TDC groups across all examined regions. These findings suggest that the concentrations of GSH (an important antioxidant and neuromodulator) and GABA (a major inhibitory neurotransmitter) do not exhibit marked alterations in children with ASD compared to TDC. A statistically significant positive correlation was observed between GABA levels in the SM1 and Thal regions with ADHD inattention scores. No significant correlation was found between metabolite levels and hyper/impulsive scores of ADHD, measures of core ASD symptoms (ADOS-2, SRS-P) or adaptive behavior (ABAS-2). While both GSH and GABA have been implicated in various neurological disorders, the current study provides valuable insights into the specific context of ASD and highlights the need for further research to explore other neurochemical alterations that may contribute to the pathophysiology of this complex disorder.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Criança , Humanos , Espectroscopia de Ressonância Magnética/métodos , Transtorno Autístico/metabolismo , Encéfalo , Glutationa/metabolismo , Ácido gama-Aminobutírico/metabolismo
9.
Magn Reson Med ; 91(3): 860-885, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946584

RESUMO

Brain cell structure and function reflect neurodevelopment, plasticity, and aging; and changes can help flag pathological processes such as neurodegeneration and neuroinflammation. Accurate and quantitative methods to noninvasively disentangle cellular structural features are needed and are a substantial focus of brain research. Diffusion-weighted MRS (dMRS) gives access to diffusion properties of endogenous intracellular brain metabolites that are preferentially located inside specific brain cell populations. Despite its great potential, dMRS remains a challenging technique on all levels: from the data acquisition to the analysis, quantification, modeling, and interpretation of results. These challenges were the motivation behind the organization of the Lorentz Center workshop on "Best Practices & Tools for Diffusion MR Spectroscopy" held in Leiden, the Netherlands, in September 2021. During the workshop, the dMRS community established a set of recommendations to execute robust dMRS studies. This paper provides a description of the steps needed for acquiring, processing, fitting, and modeling dMRS data, and provides links to useful resources.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Consenso , Encéfalo/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Difusão , Imagem de Difusão por Ressonância Magnética/métodos
10.
Magn Reson Med ; 91(2): 431-442, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37876339

RESUMO

PURPOSE: To compare the respective ability of PRESS and sLASER to reveal biological relationships, using age as a validation covariate at 3 T. METHODS: MRS data were acquired from 102 healthy volunteers using PRESS and sLASER in centrum semiovale and posterior cingulate cortex (PCC). Acquisition parameters included TR/TE = 2000/30 ms, 96 transients, and 2048 datapoints sampled at 2 kHz. Spectra were analyzed using Osprey. SNR, FWHM linewidth of total creatine, and metabolite concentrations were extracted. A linear model was used to compare SNR and linewidth. Paired t-tests were used to assess differences in metabolite measurements between PRESS and sLASER. Correlations were used to evaluate the relationship between PRESS and sLASER metabolite estimates, as well as the strength of each metabolite-age relationship. Coefficients of variation were calculated to assess inter-subject variability in each metabolite measurement. RESULTS: SNR and linewidth were significantly higher (p < 0.01) for sLASER than PRESS in PCC. Paired t-tests showed significant differences between PRESS and sLASER in most metabolite measurements. PRESS-sLASER measurements were significantly correlated (p < 0.05) for most metabolites. Metabolite-age relationships were consistently identified using both methods. Similar coefficients of variation were observed for most metabolites. CONCLUSION: The study results suggest strong agreement between PRESS and sLASER in identifying relationships between brain metabolites and age in centrum semiovale and PCC data acquired at 3 T. sLASER is technically desirable due to the reduced chemical shift displacement artifact; however, PRESS performed similarly in homogeneous brain regions at clinical field strength.


Assuntos
Encéfalo , Corpo Caloso , Humanos , Espectroscopia de Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Creatina/metabolismo , Modelos Lineares
11.
NMR Biomed ; : e5076, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091628

RESUMO

Literature values vary widely for within-subject test-retest reproducibility of gamma-aminobutyric acid (GABA) measured with edited magnetic resonance spectroscopy (MRS). Reasons for this variation remain unclear. Here, we tested whether three acquisition parameters-(1) sequence complexity (two-experiment MEscher-GArwood Point RESolved Spectroscopy [MEGA-PRESS] vs. four-experiment Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy [HERMES]); (2) editing pulse duration (14 vs. 20 ms); and (3) scanner frequency drift (interleaved water referencing [IWR] turned ON vs. OFF)-and two linear combination modeling variations-(1) three different coedited macromolecule models (called "1to1GABA", "1to1GABAsoft", and "3to2MM" in the Osprey software package); and (2) 0.55- versus 0.4-ppm spline baseline knot spacing-affected the within-subject coefficient of variation of GABA + macromolecules (GABA+). We collected edited MRS data from the dorsal anterior cingulate cortex from 20 participants (mean age: 30.8 ± 9.5 years; 10 males). Test and retest scans were separated by removing the participant from the scanner for 5-10 min. Each acquisition consisted of two MEGA-PRESS and two HERMES sequences with editing pulse durations of 14 and 20 ms (referred to here as MEGA-14, MEGA-20, HERMES-14, and HERMES-20; all TE = 80 ms, 224 averages). We identified the best test-retest reproducibility following postprocessing with a composite model of the 0.9- and 3-ppm macromolecules ("3to2MM"); this model performed particularly well for the HERMES data. Furthermore, sparser (0.55- compared with 0.4-ppm) spline baseline knot spacing yielded generally better test-retest reproducibility for GABA+. Replicating our prior results, linear combination modeling in Osprey compared with simple peak fitting in Gannet resulted in substantially better test-retest reproducibility. However, reproducibility did not consistently differ for MEGA-PRESS compared with HERMES, for 14- compared with 20-ms editing pulses, or for IWR-ON versus IWR-OFF. These results highlight the importance of model selection for edited MRS studies of GABA+, particularly for clinical studies that focus on individual patient differences in GABA+ or changes following an intervention.

12.
Mol Autism ; 14(1): 44, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978557

RESUMO

INTRODUCTION: Autism spectrum disorder (ASD) encompasses a heterogeneous group with varied phenotypes and etiologies. Identifying pathogenic subgroups could facilitate targeted treatments. One promising avenue is investigating energy metabolism, as mitochondrial dysfunction has been implicated in a subgroup of ASD. Lactate, an indicator of energy metabolic anomalies, may serve as a potential biomarker for this subgroup. This study aimed to examine cerebral lactate (Lac+) levels in high-functioning adults with ASD, hypothesizing elevated mean Lac+ concentrations in contrast to neurotypical controls (NTCs). MATERIALS AND METHODS: Magnetic resonance spectroscopy (MRS) was used to study cerebral Lac+ in 71 adults with ASD and NTC, focusing on the posterior cingulate cortex (PCC). After quality control, 64 ASD and 58 NTC participants remained. Lac+ levels two standard deviations above the mean of the control group were considered elevated. RESULTS: Mean PCC Lac+ levels were significantly higher in the ASD group than in the NTC group (p = 0.028; Cohen's d = 0.404), and 9.4% of the ASD group had elevated levels as compared to 0% of the NTCs (p = 0.029). No significant correlation was found between blood serum lactate levels and MRS-derived Lac+ levels. LIMITATIONS: A cautious interpretation of our results is warranted due to a p value of 0.028. In addition, a higher than anticipated proportion of data sets had to be excluded due to poor spectral quality. CONCLUSION: This study confirms the presence of elevated cerebral Lac+ levels in a subgroup of adults with ASD, suggesting the potential of lactate as a biomarker for mitochondrial dysfunction in a subgroup of ASD. The lower-than-expected prevalence (20% was expected) and moderate increase require further investigation to elucidate the underlying mechanisms and relationships with mitochondrial function.


Assuntos
Transtorno do Espectro Autista , Humanos , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Ácido Láctico/metabolismo , Biomarcadores
13.
Front Neurosci ; 17: 1249539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841685

RESUMO

Pediatric traumatic brain injury (TBI) is a leading cause of death and disability in children. Due to bidirectional communication between the brain and gut microbial population, introduction of key gut bacteria may mitigate critical TBI-induced secondary injury cascades, thus lessening neural damage and improving functional outcomes. The objective of this study was to determine the efficacy of a daily fecal microbial transplant (FMT) to alleviate neural injury severity, prevent gut dysbiosis, and improve functional recovery post TBI in a translational pediatric piglet model. Male piglets at 4-weeks of age were randomly assigned to Sham + saline, TBI + saline, or TBI + FMT treatment groups. A moderate/severe TBI was induced by controlled cortical impact and Sham pigs underwent craniectomy surgery only. FMT or saline were administered by oral gavage daily for 7 days. MRI was performed 1 day (1D) and 7 days (7D) post TBI. Fecal and cecal samples were collected for 16S rRNA gene sequencing. Ipsilateral brain and ileum tissue samples were collected for histological assessment. Gait and behavior testing were conducted at multiple timepoints. MRI showed that FMT treated animals demonstrated decreased lesion volume and hemorrhage volume at 7D post TBI as compared to 1D post TBI. Histological analysis revealed improved neuron and oligodendrocyte survival and restored ileum tissue morphology at 7D post TBI in FMT treated animals. Microbiome analysis indicated decreased dysbiosis in FMT treated animals with an increase in multiple probiotic Lactobacilli species, associated with anti-inflammatory therapeutic effects, in the cecum of the FMT treated animals, while non-treated TBI animals showed an increase in pathogenic bacteria, associated with inflammation and disease such in feces. FMT mediated enhanced cellular and tissue recovery resulted in improved motor function including stride and step length and voluntary motor activity in FMT treated animals. Here we report for the first time in a highly translatable pediatric piglet TBI model, the potential of FMT treatment to significantly limit cellular and tissue damage leading to improved functional outcomes following a TBI.

14.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808813

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Altered neurometabolite levels, including glutathione (GSH) and gamma-aminobutyric acid (GABA), have been proposed as potential contributors to the biology underlying ASD. This study investigated whether cerebral GSH or GABA levels differ between a large cohort of children aged 8-12 years with ASD (n=52) and typically developing children (TDC, n=49). A comprehensive analysis of GSH and GABA levels in multiple brain regions, including the primary motor cortex (SM1), thalamus (Thal), medial prefrontal cortex (mPFC), and supplementary motor area (SMA), was conducted using single-voxel HERMES MR spectroscopy at 3T. The results revealed no significant differences in cerebral GSH or GABA levels between the ASD and TDC groups across all examined regions. These findings suggest that the concentrations of GSH (an important antioxidant and neuromodulator) and GABA (a major inhibitory neurotransmitter) do not exhibit marked alterations in children with ASD compared to TDC. A statistically significant positive correlation was observed between GABA levels in the SM1 and Thal regions with ADHD inattention scores. No significant correlation was found between metabolite levels and hyper/impulsive scores of ADHD, measures of core ASD symptoms (ADOS-2, SRS-P) or adaptive behavior (ABAS-2). While both GSH and GABA have been implicated in various neurological disorders, the current study provides valuable insights into the specific context of ASD and highlights the need for further research to explore other neurochemical alterations that may contribute to the pathophysiology of this complex disorder.

15.
J Med Syst ; 47(1): 69, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418036

RESUMO

Magnetic resonance spectroscopy (MRS) can non-invasively measure levels of endogenous metabolites in living tissue and is of great interest to neuroscience and clinical research. To this day, MRS data analysis workflows differ substantially between groups, frequently requiring many manual steps to be performed on individual datasets, e.g., data renaming/sorting, manual execution of analysis scripts, and manual assessment of success/failure. Manual analysis practices are a substantial barrier to wider uptake of MRS. They also increase the likelihood of human error and prevent deployment of MRS at large scale. Here, we demonstrate an end-to-end workflow for fully automated data uptake, processing, and quality review.The proposed continuous automated MRS analysis workflow integrates several recent innovations in MRS data and file storage conventions. They are efficiently deployed by a directory monitoring service that automatically triggers the following steps upon arrival of a new raw MRS dataset in a project folder: (1) conversion from proprietary manufacturer file formats into the universal format NIfTI-MRS; (2) consistent file system organization according to the data accumulation logic standard BIDS-MRS; (3) executing a command-line executable of our open-source end-to-end analysis software Osprey; (4) e-mail delivery of a quality control summary report for all analysis steps.The automated architecture successfully completed for a demonstration dataset. The only manual step required was to copy a raw data folder into a monitored directory.Continuous automated analysis of MRS data can reduce the burden of manual data analysis and quality control, particularly for non-expert users and multi-center or large-scale studies and offers considerable economic advantages.


Assuntos
Software , Humanos , Fluxo de Trabalho , Espectroscopia de Ressonância Magnética/métodos , Probabilidade
16.
Anal Biochem ; 676: 115227, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423487

RESUMO

Proton (1H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo. Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.


Assuntos
Encéfalo , Software , Espectroscopia de Ressonância Magnética/métodos , Encéfalo/metabolismo , Algoritmos , Padrões de Referência , Prótons
17.
Int J Neuropsychopharmacol ; 26(6): 438-450, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37235749

RESUMO

BACKGROUND: 3,4-Methylenedioxymethamphetamine (MDMA) is a widely used recreational substance inducing acute release of serotonin. Previous studies in chronic MDMA users demonstrated selective adaptations in the serotonin system, which were assumed to be associated with cognitive deficits. However, serotonin functions are strongly entangled with glutamate as well as γ-aminobutyric acid (GABA) neurotransmission, and studies in MDMA-exposed rats show long-term adaptations in glutamatergic and GABAergic signaling. METHODS: We used proton magnetic resonance spectroscopy (MRS) to measure the glutamate-glutamine complex (GLX) and GABA concentrations in the left striatum and medial anterior cingulate cortex (ACC) of 44 chronic but recently abstinent MDMA users and 42 MDMA-naïve healthy controls. While the Mescher-Garwood point-resolved-spectroscopy sequence (MEGA-PRESS) is best suited to quantify GABA, recent studies reported poor agreement between conventional short-echo-time PRESS and MEGA-PRESS for GLX measures. Here, we applied both sequences to assess their agreement and potential confounders underlying the diverging results. RESULTS: Chronic MDMA users showed elevated GLX levels in the striatum but not the ACC. Regarding GABA, we found no group difference in either region, although a negative association with MDMA use frequency was observed in the striatum. Overall, GLX measures from MEGA-PRESS, with its longer echo time, appeared to be less confounded by macromolecule signal than the short-echo-time PRESS and thus provided more robust results. CONCLUSION: Our findings suggest that MDMA use affects not only serotonin but also striatal GLX and GABA concentrations. These insights may offer new mechanistic explanations for cognitive deficits (e.g., impaired impulse control) observed in MDMA users.


Assuntos
Ácido Glutâmico , N-Metil-3,4-Metilenodioxianfetamina , Ratos , Animais , Espectroscopia de Ressonância Magnética/métodos , Serotonina , Giro do Cíngulo/diagnóstico por imagem , Ácido gama-Aminobutírico , Glutamina
18.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37215030

RESUMO

Neural networks are potentially valuable for many of the challenges associated with MRS data. The purpose of this manuscript is to describe the AGNOSTIC dataset, which contains 259,200 synthetic 1H MRS examples for training and testing neural networks. AGNOSTIC was created using 270 basis sets that were simulated across 18 field strengths and 15 echo times. The synthetic examples were produced to resemble in vivo brain data with combinations of metabolite, macromolecule, residual water signals, and noise. To demonstrate the utility, we apply AGNOSTIC to train two Convolutional Neural Networks (CNNs) to address out-of-voxel (OOV) echoes. A Detection Network was trained to identify the point-wise presence of OOV echoes, providing proof of concept for real-time detection. A Prediction Network was trained to reconstruct OOV echoes, allowing subtraction during post-processing. Complex OOV signals were mixed into 85% of synthetic examples to train two separate CNNs for the detection and prediction of OOV signals. AGNOSTIC is available through Dryad and all Python 3 code is available through GitHub. The Detection network was shown to perform well, identifying 95% of OOV echoes. Traditional modeling of these detected OOV signals was evaluated and may prove to be an effective method during linear-combination modeling. The Prediction Network greatly reduces OOV echoes within FIDs and achieved a median log10 normed-MSE of -1.79, an improvement of almost two orders of magnitude.

19.
bioRxiv ; 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37205343

RESUMO

Proton ( 1 H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo . Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T 2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.

20.
Front Oncol ; 13: 1077461, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007074

RESUMO

The adverse effects of lactic acidosis in the cancer microenvironment have been increasingly recognized. Dichloroacetate (DCA) is an orally bioavailable, blood brain barrier penetrable drug that has been extensively studied in the treatment of mitochondrial neurologic conditions to reduce lactate production. Due to its effect reversing aerobic glycolysis (i.e., Warburg-effect) and thus lactic acidosis, DCA became a drug of interest in cancer as well. Magnetic resonance spectroscopy (MRS) is a well-established, non-invasive technique that allows detection of prominent metabolic changes, such as shifts in lactate or glutamate levels. Thus, MRS is a potential radiographic biomarker to allow spatial and temporal mapping of DCA treatment. In this systematic literature review, we gathered the available evidence on the use of various MRS techniques to track metabolic changes after DCA administration in neurologic and oncologic disorders. We included in vitro, animal, and human studies. Evidence confirms that DCA has substantial effects on lactate and glutamate levels in neurologic and oncologic disease, which are detectable by both experimental and routine clinical MRS approaches. Data from mitochondrial diseases show slower lactate changes in the central nervous system (CNS) that correlate better with clinical function compared to blood. This difference is most striking in focal impairments of lactate metabolism suggesting that MRS might provide data not captured by solely monitoring blood. In summary, our findings corroborate the feasibility of MRS as a pharmacokinetic/pharmacodynamic biomarker of DCA delivery in the CNS, that is ready to be integrated into currently ongoing and future human clinical trials using DCA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA